How to compute the maximal subsemigroups of a finite semigroup in GAP

Wilf Wilson

18th March 2015

Joint work with Casey Donoven and James Mitchell

- New PhD student in mathematics.
- As an undergraduate I helped to make: SmallerDegreePartialPermRepresentation for Citrus.
 - ▶ c.f. SmallerDegreePermRepresentation in GAP library.
- My PhD will involve improving computational semigroup theory.

The MaximalSubsemigroups methods apply to all types of semigroup. The methods use a lot of the functionality in Semigroups package.

Testing MaximalSubsemigroups helped highlight issues in the package.

Definition (maximal subgroup)

Let G be a group and let H be a subgroup of G. Then H is *maximal* if:

- $H \neq G$.
- For all subgroups U: $H \le U \le G \Rightarrow U = G$ or U = H.

Definition (maximal subgroup)

Let G be a group and let H be a subgroup of G. Then H is *maximal* if:

- $H \neq G$.
- For all subgroups U: $H \le U \le G \Rightarrow U = G$ or U = H.

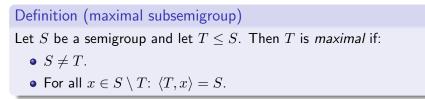
Definition (maximal subsemigroup)

Let S be a semigroup and let T be a subsemigroup of S. Then T is $\mathit{maximal}$ if:

- $T \neq S$.
- For all subsemigroups U:
 - $T \leq U \leq S \Rightarrow U = S \text{ or } U = T.$

Definition (maximal subsemigroup)

- Let S be a semigroup and let $T \leq S$. Then T is *maximal* if:
 - $S \neq T$.
 - For all $x \in S \setminus T$: $\langle T, x \rangle = S$.

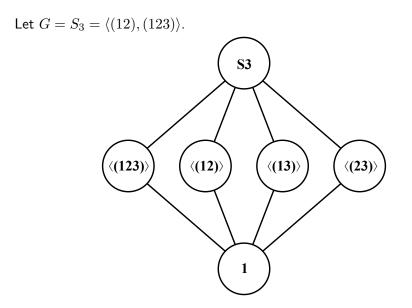


We use this definition in the function IsMaximalSubsemigroup(S, T).

```
return S <> T
and ForAll(S, x -> x in T or Semigroup(T, x) = S);
```

More sophisticated algorithms did not prove faster. However in HPC-GAP this could become useful again.

The maximal subgroups of S_3



Let G be a finite group. The subsemigroups of G are the subgroups of G.

Therefore the maximal subsemigroups of G are its maximal subgroups.

Let G be a finite group. The subsemigroups of G are the subgroups of G.

Therefore the maximal subsemigroups of G are its maximal subgroups.

Therefore we need to calculate maximal subgroups! (Of course!) This is done very well with GAP: MaximalSubgroups.

These are equivalence relations defined on the set \boldsymbol{S} as follows:

These are equivalence relations defined on the set \boldsymbol{S} as follows:

- $x \mathscr{R} y$ if and only if $xS^1 = yS^1$.
- $x \mathscr{L} y$ if and only if $S^1 x = S^1 y$.
- $x \mathscr{H} y$ if and only if $x \mathscr{R} y$ and $x \mathscr{L} y$.

•
$$x \mathscr{J} y$$
 if and only if $S^1 x S^1 = S^1 y S^1$

Implemented in the GAP library. e.g. RClasses(S). Expanded upon in the Semigroups package.

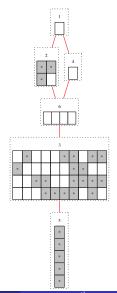
The diagram of a semigroup

The diagram of the semigroup S generated by these three transformations:

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 2 & 5 & 3 \end{pmatrix}, \\ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 4 & 1 & 1 \end{pmatrix},$

 $\left(\begin{smallmatrix}1&2&3&4&5\\5&5&2&5&5\end{smallmatrix}\right).$

Created by DotDClasses in Semigroups package.



For a \mathscr{J} -class J, define J^* to be the semigroup $J \cup \{0\}$, with:

$$x * y = \begin{cases} xy & \text{if } x, y, xy \in J. \\ 0 & \text{otherwise.} \end{cases}$$

Then J^* is isomorphic to a Rees 0-matrix semigroup.

Can calculate J^* easily with Semigroups: PrincipalFactor(J).

Graham, N. and Graham, R. and Rhodes J. Maximal Subsemigroups of Finite Semigroups. Journal of Combinatorial Theory, 4:203-209, 1968.

• Ron Graham wrote Concrete Mathematics with Knuth and Patashnik.

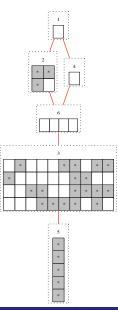
Let M be a maximal subsemigroup of a finite semigroup S.

Let ${\cal M}$ be a maximal subsemigroup of a finite semigroup S.

- $\begin{tabular}{ll} \begin{tabular}{ll} M \\ \end{tabular} \end{tabular} one & \end{tabular} -class \\ \end{tabular} of \\ S, \\ J \\ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular}$
- Other conditions...
- $\begin{tabular}{ll} \begin{tabular}{ll} 0 \\ M \cap J \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \begin{tabular}{ll} 0 \\ M \cap J \end{tabular} \end{tabular} \begin{tabular}{ll} \begin{tabular}{ll} 0 \\ \begi$

This is back-to-front!

The diagram of a semigroup (again)



```
We need to consider J^* for each relevant \mathscr{J}-class. These are independent \Rightarrow parallelisable.
```

The essential problem is to be able to calculate maximal subsemigroups of Rees 0-matrix semigroups.

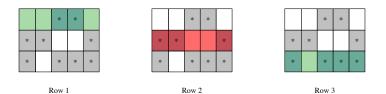
Theory tells us to get a maximal subsemigroup we must either:

- Replace the group by a maximal subgroup.
- Remove a whole row/column of the semigroup.
- Remove the complement of a maximal rectangle of zeroes.

(With certain conditions).

		*	*	
*	*			*
*		*	*	*

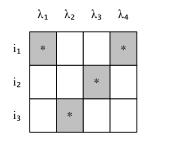
The egg-box diagram of J



Wilf Wilson

How to compute the maximal subsemigroups

Maximal rectangles of zeroes...



*

 λ_1 λ_2 λ_3 λ_4

*

*

i1

i2

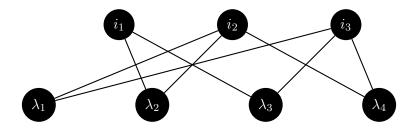
i3

*

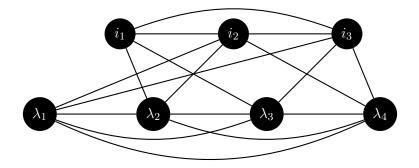
The problem: Find maximal $I' \subset I$ and $\Lambda' \subset \Lambda$ such that $I' \times \Lambda'$ contains only white boxes.

Wilf Wilson

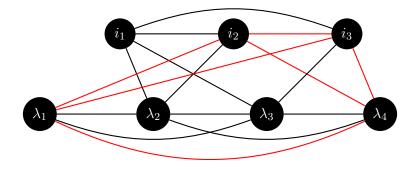
How to compute the maximal subsemigroups



Add in these extra edges...



Identify maximal cliques...



We use CompleteSubgraphs in the GRAPE package. Could this benefit from HPC-GAP?

End.