
Towards thread-safe
GAP library

Alexander Konovalov	

Centre of Interdisciplinary Research in Computational Algebra	

University of St Andrews

2nd GAP Days	

Aachen, 16-20 March 2015

Thread
3

Thread-local	

Region

[1,2,3]

The Big Picture of access rules

Objects for
which the kernel

permits only
atomic operations	

Mainly immutable

Newly
created non-
global objects

go here [7,11]

Shared Regions

rec(..) []

Free access

Access
when holding

lock

Migration

Thread
2

Thread-local	

Region

rec(a := 42)

Mak
ing

 re
ad

-o
nly Access

via atomic
kernel ops

The Public Region

1765489256789421067

S10

channel

Rationals

GF(11) x^2+1

<atomic record 1/2 full>

<atomic list of size 10>

Free read-
only access

The Read-only Region
[7,11]

rec(..)

infinity InfoClass(..)

MeatAxe record

TYPES_VEC8BIT

Thread
1

Thread-local	

Region

[1,2,3]

rec(a := 3, b := (1,6))

Frequently asked question

• Q: If I will construct a group in a thread, will it be thread-local?	

• A: No. It is an atomic component object, so it will be located
in the public region

gap> G:=SymmetricGroup(3);!
Sym([1 .. 3])!
gap> RegionOf(G);!
<region: public region>!
gap> t:=RunTask(!
> function() G:=SymmetricGroup(4);end);;!
gap> G;!
Sym([1 .. 4])!
gap> RegionOf(G);!
<region: public region>

gap> RegionOf([1,2,3]);!
<region: thread region #0>!
gap> RegionOf(rec(a:=1));!
<region: thread region #0>

gap> PARAM:=1;;!
gap> t:=RunTask(!
> function() PARAM:=2;end);;!
gap> PARAM;!
2

• Lists and records will be thread-local 	

• OTOH, immutable global variables may be changed by any thread	

• Use thread-local variables if this is not needed

Exercise: find thread-local globals
•List all global variables that wrongly stay thread-local:	

• Filtered(NamesSystemGVars(),!
 x -> IsBoundGlobal(x) and IsThreadLocal(ValueGlobal(x)));	

•But there are more of these: E.g. fam!.Zcache in
ffecoway.gi keeps known primitive elements of finite
fields of characteristic p

FFECONWAY.ZNC := function(p,d)!
 local fam, zc, v;!
 fam := FFEFamily(p);!
 if not IsBound(fam!.ZCache) then!
 fam!.ZCache := [];!
 fi;!
 zc := fam!.ZCache;!
 ...!
 return zc[d];!
end;

• Discoverable only at
runtime and only when
accessed by another thread	

•!. syntax is used in ~5K
lines in the GAP library and
in 23K+ lines in 600+ files in
GAP packages

Some common recipes

Global lists or records, which are
not changed after their creation make read-only

Global lists or records, which
may change atomically at runtime,
possibly not losing or changing
anything already stored

make atomic, possibly with write-
once or even strict write-once
semantics

Global lists used as caches, which
may be modified in a non-atomic
way

put in a shared region to ensure
that only one thread may modify
them at a time

Data which make sense only
within some limited scope make thread-local

Making objects read-only
Search for calls of MakeReadOnly in the GAP library to see examples:	

■ Making read-only global function records like GAPTCENUM,
GAPKB_REW, IEEE754FLOAT, SMTX.	

■ Making read-only global lists such as e.g.
CompareCyclotomicCollectionHelper_Semirings.	

■ Making read-only special objects e.g. infinity, NullMapMatrix, Info classes.	

■ Making read-only type objects such as e.g. TypeOfTypes,

TypeOfFamilyOfTypes, TypeOfFamilyOfFamilies.	

■ Making read-only ZmodnZObj objects (see zmodnz.gi).	

■ Organising global data in read-only lists of write-once atomic lists, e.g.

TYPES_VEC8BIT and TYPES_MAT8BIT.	

■ Making read-only thread-local lists before storing in the shared cache,

e.g. fam!.ConwayPolCoeffs[d] := MakeReadOnly(cp) from ffeconway.gi	

Atomic records

Examples of global records which were made atomic include:!
■ GAPInfo record and its components, e.g. GAPInfo.UserPreferences,

GAPInfo.CommandLineEditFunctions, GAPInfo.PackagesLoaded
etc.!

■ CONWAYPOLYNOMIALSINFO.cache used for p > 110000 (with
write-once semantics)!

■ Such records may change at runtime so they can not be made
immutable, but we assume that there is no need to lock such data if
part of them is being modified.

Using named regions
If a region contains many objects that should be locked
simultaneously, it may be convenient to use named regions.
Named regions may be created using e.g.	

!
TERMINAL_REGION := ShareObj(“Terminal region");!
!
or even with specifying a name to display:!
!
HELP_REGION:=NewRegion(“Help region");!
!
Then instead of listing variable(s) that need to be locked, an
atomic statement may use the name of the region, e.g.	

!
atomic readonly HELP_REGION do!
 ...!
od;

Other precautions

• Careful about using external representation of an

object (will produce thread-local data)	

• Beware of using CLONE_OBJ - it is a horrible hack 	

• Careful about in-place conversions (more on this later)

Fix in MultiplicativeElementsWithInversesFamilyByRws

A series of cleanups in the kernel and library revealed
a number of issues which did not show up before

Changes with major impact 	

on the foreground test

•Implemented Unbind() for atomic component objects
•Fixed a bug in APPEND_LIST_INTR([],immutable_list)
•Added a missing line in StoreInfoFreeMagma.

in the meantime, 	

in the underground ...

Facilitated shared
access to
several global
data structures

Fixed and simplified
extended type
construction

Facilitated shared
access to
several global
data structures

Fixed and simplified
extended type
construction

•TYPES_MAT8BIT made an atomic list
of atomic lists with write once
semantics
•Make ffe to integer conversion tables
immutable when we create them

•Called MakeWriteOnceAtomic for FFEFamily(p) and
sorted out its caches.
•Made various objects in zmodnz.gi read-only.
•FFEFamily(p)!.ZCache is MadeWriteOnceAtomic list.
•Migrate data when extending PrimesProofs.
•Cleanups around ConwayPolynomials
•Some other changes

ProdCoeffUnivfunc calls
UnivariateRationalFunctionByExtRepNC
and this involves calling CLONE_OBJ on
one of its read-only arguments. This was
fixed using ShallowCopy.

Changes with major impact on the background test
•TYPES_VEC8BIT shared (later

was made an atomic list of atomic
lists with write once semantics
• Finite fields kernel code thread-safe
•fam!.threeLaurentPolynomialTypes

made immutable

•Implemented Unbind() for atomic component objects
•Fixed a bug in APPEND_LIST_INTR([],immutable_list)
•Added a missing line in StoreInfoFreeMagma.

GAP standard test suite

Test
Number of diffs

Main execution thread
(alpha-release)

Background thread	

(no packages)

testinstall 0 12

testall
1 (just different

degree perm.rep)
119 (some from

missing pkgs)

Tutorial examples
8 (all harmless e.g.
from randomness)

not tested at the
moment

Reference manual
examples

58 (all harmless e.g.
from randomness)

not tested at the
moment

Global variables
remaining thread-local

86

(Currently observed numbers for the HPC-GAP compiled in 64-bit mode with GMP. Alpha	

release also uses packages: AutPGrp, AtlasRep, CTblLib, GAPDoc, GrpConst, irredsol, TomLib)

Debugging toolkit

• May be disruptive: no nice recovery from the break loop	

• ReadGuards and WriteGuards - special assertions	

• LastInaccessible;	

• RegionOf(LastInaccessible);	

• ViewShared(LastInaccessible);!

• MAKE_PUBLIC(LastInaccessible);	

• UNSAFE_VIEW(LastInaccessible);	

• FindAllGVarsHolding(LastInaccessible);

Debugging toolkit
• With ‘make debug’ or ‘make gapdebug’:	

• CREATOR_OF(LastInaccessible);!

• List(CREATOR_OF(LastInaccessible),!

 NAME_FUNC);	

• OBJ_HANDLE(...)	

• DISABLE_GUARDS(n):!

• disable read guards with n=1	

• disable read and write guards with n=2	

• enable with n=0

Old, old tale about an error
gap> TaskResult(RunTask(SmallGroup,[8,3])); !
Error, No read access to object 4398002176 of type list (plain,cyc)!
in gen/vars.c, line 1419, function EvalElmList(), accessing list in!
 if IsIdenticalObj(LETTER_WORD_EREP_CACHE[i], w) then!
 return LETTER_WORD_EREP_CACHEVAL[i];!
fi; called from !
ERepLettWord(w) called from!
NumberSyllables(gens[i]) called from!
SingleCollectorByRelators(efam, gens, rels, conflicts) called from!
PolycyclicFactorGroupByRelators(ElementsFamily(FamilyObj(fgrp)),
GeneratorsOfGroup(fgrp), !
 rels) called from!
PolycyclicFactorGroup(FreeGroupOfFpGroup(F), RelatorsOfFpGroup(F)
) called from!
... at line 0 of *defin*!
brk> OBJ_HANDLE(4398002176);!
<obj 4398002176 inaccessible in region: thread region #0>!
brk> UNSAFE_VIEW(OBJ_HANDLE(4398002176));!
[1, 1, 1]

■ This points to LETTER_WORD_EREP_CACHEVAL

Using thread-local caches
■ Indeed, ERepLettWord function from wordlett.gi uses a

cache of the last three external representations, so we made
them thread-local by adding three lines:

We cache the last 3 external representations to use them for syllable access.!
LETTER_WORD_EREP_CACHE:=[1,1,1]; # initialization with dummys!
LETTER_WORD_EREP_CACHEVAL:=[1,1,1]; # initialization with dummys!
LETTER_WORD_EREP_CACHEPOS:=1;!
!
MakeThreadLocal("LETTER_WORD_EREP_CACHE");!
MakeThreadLocal("LETTER_WORD_EREP_CACHEVAL");!
MakeThreadLocal("LETTER_WORD_EREP_CACHEPOS");!
!
BindGlobal("ERepLettWord",function(w)!
local i,r,elm,len,g,h,e;!
 for i in [1..3] do!
 if IsIdenticalObj(LETTER_WORD_EREP_CACHE[i],w) then!
 return LETTER_WORD_EREP_CACHEVAL[i];!
 fi;!
 od;!
 ...!
 LETTER_WORD_EREP_CACHE[LETTER_WORD_EREP_CACHEPOS]:=w;!
 LETTER_WORD_EREP_CACHEVAL[LETTER_WORD_EREP_CACHEPOS]:=Immutable(r);!
 LETTER_WORD_EREP_CACHEPOS:=(LETTER_WORD_EREP_CACHEPOS mod 3)+1;!
 return r;!
end);

Using shared caches
•As an example, we consider APPROXROOTS which is used by ApproximateRoot!
•First, APPROXROOTS must be shared upon its creation:!

APPROXROOTS:=[]; ShareSpecialObj(APPROXROOTS);!

•Its usage in ApproximateRoot follows the "check-compute-recheck" pattern:!
• check if it's already known and return if so (only read lock is required)!
• if not known, compute it. Do not hold the lock while doing it.!
• acquire the write-lock, and check again if the result is already known, because it

may be computed by another thread in the meantime:!
• if known, abandon your result and return what is already stored!
• if not known, save and return your result.!

•It is important to remember that the cache is in the shared region, so any data
which are written to the cache, should also be migrated to its region or make
immutable, whatever is appropriate.!
•See next slide for an example.!
•Another examples of a shared caches (which may be flushed) are !
 ABELIAN_NUMBER_FIELDS and Z_MOD_NZ. !
•For more examples, look for calls of ShareSpecialObj in the library.

Shared caches - example
BindGlobal("ApproximateRoot",function(arg)!
local r,e,f,x,nf,lf,c,store;!
 r:=arg[1]; e:=arg[2];!
 # CHECK!
 store:= e<=10 and IsInt(r) and 0<=r and r<=100;!
 if store then!
 atomic readonly APPROXROOTS do!
 if IsBound(APPROXROOTS[e]) and IsBound(APPROXROOTS[e][r+1])!
 then return APPROXROOTS[e][r+1];!
 fi;!
 od;!
 fi;!
 # COMPUTE x!
 ...!
 # RECHECK!
 if store then!
 atomic readwrite APPROXROOTS do!
 if not IsBound(APPROXROOTS[e]) then!
 APPROXROOTS[e]:=MigrateObj([],APPROXROOTS);!
 APPROXROOTS[e][r+1]:=x;!
 elif IsBound(APPROXROOTS[e][r+1]) then!
 return APPROXROOTS[e][r+1];!
 else!
 APPROXROOTS[e][r+1] := x;!
 fi;!
 od; !
 fi;!
 return x;!
end);

Write-once atomic lists
for accumulating caches

■ fam!.ConwayFieldCache only accumulates the data. It is never being reset.
Each field GF(p^d) is stored in a fixed d-th position. Since
fam!.ConwayFieldCache is an atomic lists, different threads may read it
without explicit locking, and making it write-once ensures that only the 1st thread
writing to the d-th position will actually write it, others will be using stored value.!

■ TYPES_VEC8BIT, TYPES_MAT8BIT are read-only lists of write-once atomic lists!
■ _TransformationFamiliesDatabase is a write-once atomic list to store

transformation types and families.

 InstallMethod(LargeGaloisField, [IsPosInt, IsPosInt], function(p,d)!
 ...!
 fam := FFEFamily(p);!
 if not IsBound(fam!.ConwayFieldCache) then!
 fam!.ConwayFieldCache := MakeWriteOnceAtomic([]);!
 fi;!
 if not IsBound(fam!.ConwayFieldCache[d]) then!
 fam!.ConwayFieldCache[d] := !
 FieldByGenerators(GF(p,1),[FFECONWAY.ZNC(p,d)]);!
 fi;!
 return fam!.ConwayFieldCache[d];!
 end);!

Storing additional information in the type
■ Types are created in read-only region!
■ Sometimes, type is used to store additional information, e.g. in
MultiplicativeElementsWithInversesFamilyByRws methods in rwspcgrp.gi!

■ Recommended solution to call StrictBindOnce
InstallMethod(MultiplicativeElementsWithInversesFamilyByRws, !
 "16 bits family", true, !
 ...!
 # create the default type for the elements!
 fam!.defaultType := NewType(fam, IsPackedElementDefaultRep);!
 # create the special 16 bits type!
 fam!.16BitsType := NewType(fam, Is16BitsPcWordRep);!
!
 for i in [AWP_FIRST_ENTRY+1 .. AWP_FIRST_FREE-1] do!
! StrictBindOnce(fam!.16BitsType, i, sc![SCP_DEFAULT_TYPE]![i]);!
 od;!
 StrictBindOnce(fam!.16BitsType, AWP_PURE_TYPE, fam!.16BitsType);!
 StrictBindOnce(fam!.16BitsType, PCWP_NAMES, FamilyObj(ReducedOne(sc))!.names);!
 sc := ShallowCopy(sc);!
 sc![SCP_DEFAULT_TYPE] := fam!.16BitsType;!
 StrictBindOnce(fam!.16BitsType, PCWP_COLLECTOR, sc);!
 !
 SetOne(fam, ElementByRws(fam, ReducedOne(fam!.rewritingSystem)));!
 pcs := List(GeneratorsOfRws(sc), x -> ElementByRws(fam,x));!
 SetDefiningPcgs(fam, PcgsByPcSequenceNC(fam, pcs));!
 return fam;!
end);

New: CopyToVectorRep
■ May eventually replace CopyToVectorRep(v , q) and associates!
■ CopyToVectorRep returns a compressed vector r which is equal to the list v but is given

in the internal row vector representation over the field of size q, if this is possible. If v can
not be written in such representation, it returns fail.!

■ The output of CopyToVectorRep will have the same mutability as v. One can use
CopyToVectorRepMutable and CopyToVectorRepImmutable to ensure that the output
will be mutable or immutable for any v.!

■ The first argument of these functions may already be a compressed vector. In this case,
if q is different from size of the field over which the vector v is represented, then r will be
the result of rewriting v over the field of size q. If v is already represented over the field of
size q, then the result will be a vector r identical to v, if both v and r are immutable, and a
new vector equal to v otherwise.!

■ CopyToVectorRepNC etc. are NC-versions of CopyToVectorRep etc. It is forbidden to
call the NC-version unless v is a plain list or a row vector, q<=256 is a valid size of a
finite field, and all elements of v lie in this field. Violation of this condition can lead to
unpredictable behaviour or a system crash. (Setting the assertion level to at least 2 might
catch some violations before a crash). The NC-version will never return fail, but may
enter a break loop in some cases.

CopyToVectorRep - example

Create a row vector and then ask GAP to rewrite it over GF(2) and then over GF(4)

gap> v := [Z(2)^0,Z(2),Z(2),0*Z(2)];!
[Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2)]!
gap> RepresentationsOfObject(v);!
["IsPlistRep", "IsInternalRep"]!
gap> w:=CopyToVectorRepNC(v,2);!
<a GF2 vector of length 4>!
gap> RepresentationsOfObject(w);!
["IsDataObjectRep", "IsGF2VectorRep"]!
gap> u:=CopyToVectorRepNC(w,4);!
[Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2)]!
gap> RepresentationsOfObject(u);!
["IsDataObjectRep", "Is8BitVectorRep"]!
gap> t:=CopyToVectorRepNC(v,4);!
[Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2)]!
gap> RepresentationsOfObject(t);!
["IsDataObjectRep", "Is8BitVectorRep"]

Some more TODOs

■Done: backporting code extensions to GAP 4.8!
■Small Groups Library: SmallGroup works for all

layers of the library, except layer 9 (groups of
order p^n > 3125 for n=4,5,6!
■grpperm.tst - runs significantly slower!
■Critical packages and data libraries!
■Polycyclic collectors - difficult problem for

multithreaded version

Popular wisdom
(from electrical engineering)

Any problem may be explained by either	

• missing contact when you need it	

or	

• shortcut, i.e. contact when you don’t need it

Popular wisdom
(from parallel programming in GAP)

Any problem may be explained by either	

• no access to the object when you need it	

or	

• access to the object when you don’t need it

This is guaranteed by ReadGuards and WriteGuards	

Everything else is a bug - please report it to us!

